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Abstract

BACKGROUND: Identifying genetic patterns that contribute to Alzheimer’s disease

(AD) is important not only for pre-symptomatic risk assessment but also for building

personalized therapeutic strategies.

METHODS:We implemented a novel simulative deep learning model to chromosome

19 genetic data from the Alzheimer’s Disease Neuroimaging Initiative and the Imag-

ing andGenetic Biomarkers of Alzheimer’s Disease datasets. Themodel quantified the

contribution of each single nucleotide polymorphism (SNP) and their epistatic impact

on the likelihood of AD using the occlusion method. The top 35 AD-risk SNPs in chro-

mosome 19were identified, and their ability to predict the rate of AD progression was

analyzed.

RESULTS: Rs561311966 (APOC1) and rs2229918 (ERCC1/CD3EAP) were recognized

as the most powerful factors influencing AD risk. The top 35 chromosome 19 AD-risk

SNPswere significant predictors of AD progression.

DISCUSSION:Themodel successfully estimated the contribution ofAD-risk SNPs that

account for AD progression at the individual level. This can help in building preventive

precisionmedicine.
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1 BACKGROUND

Alzheimer’s disease (AD) is a neurodegenerative condition that causes

irreversible cognitive dysfunction.1,2 Approximately 6.2 million Amer-

icans aged 65 or older have been diagnosed with AD.3 This number

is expected to reach 88 million in the United States and 152 million

worldwide by 2050.Despite the ever-increasing prevalence, a pharma-

cological treatment that could reverse AD has not been successfully

developed. This raises the importanceof preventivemedicine. In recent

decades, many disease-specific biomarkers have been developed using

cerebrospinal fluid (CSF), plasma, and neuroimaging4 that detect the

diseaseduringpre-symptomatic stages.5–7 Yet, only genetic factors can

identify one’s AD risk prior to any disease activity rendering primary

prevention possible.

Despite its simple composition, with only four nucleotide vari-

ants, deoxyribonucleic acid (DNA) stores the unique information of

enormous inter- and intra-species variability. The genetic code is deter-

mined by single nucleotide polymorphisms (SNPs) order and location,

their spatial relation to each other, and their epistatic interactions

with other SNPs.8–10 Genome-wide association study (GWAS) meth-

ods were used to identify AD-related SNPs by group comparison of

individuals with dementia and individuals who are cognitively unim-

paired (CU).11–15 However, GWAS does not take epistatic interactions

into account. Multiple regression approaches with the apolipoprotein

E (APOE) ε4 haplotype, the most significant sporadic AD risk factor,

together with numerous additional AD risk SNPs identified by GWAS

approaches andpolygenic risk scores,weredeveloped tobetter explain

heritability and identify the genetic architecture of AD.16–19 They,

however, explain only part of the disease heritability suggesting that

additional risk SNPs and critical information on interaction effects are

missing.

Data-driven methods (e.g., machine and deep learning mod-

els) are cutting-edge tools for pattern recognition and have been

applied to GWAS data.20–24 These methods have identified new

AD-linked SNPs, but so far these methods still fall short in cor-

rectly estimating the impact of AD risk and protective variants at

the individual level. There are likely several reasons for suboptimal

estimates of risk. First, to avoid overfitting,25 most machine/deep

learning models rely on pre-determined feature selection methods

for SNP data reduction based on assumptions and/or prior knowl-

edge. This approach restricts scientific discovery by eliminating data

linked to the outcome of interest that is yet to be discovered.

Second, deep learning methods in genetics have considered only

individual variants but not their potential interactions or positional

information.

The goal of this study was to identify the chromosome 19 chromo-

somal risk impact score (CRIS) at the individual level attributable to

individual SNPs and their interactions with each other by developing

a novel deep-learning model. Using a single chromosome significantly

reduces the computational burden to explore the feasibility and effec-

tiveness of this type ofmodel. Chromosome19 iswell known to include

manyAD-linkedgenes includingAPOE, apolipoproteinC1 (APOC1), and

RESEARCH INCONTEXT

1. Systematic Review: Previous in silico genetic research

used data-driven methods, that is, machine and deep

learning models, to identify Alzheimer’s disease (AD)

genetic risk factors. While these models presented new

AD-linked single nucleotide morphisms (SNPs), they fall

short in providing epistatic impacts of potential AD-risk

SNPs.

2. Interpretation: This article proposes a novel framework

that can translate the predictive performance of the

deep learning model into genetic findings. Our model

was developed to examine the epistatic interactions

between SNPs in chromosome 19 and thereby quan-

tify the hypothesis-free polygenic risk impact of AD-risk

SNPs in the individual. AD-risk SNPs determined by the

model were consistent with prior medical knowledge

and can help in building a pre-symptomatic genetic risk

assessment.

3. Future Directions: This article provides directions for

future studies: (1) visualize overall genetic architectures

of AD throughout all 23 chromosomes and (2) identify

the role of underrecognized AD-risk SNPs in clinical and

biological AD progression.

translocase of outer mitochondrial membrane 40 (TOMM40), which

can provide us with a sufficient resource to qualify our model’s results.

Our novel deep-learning framework used all 266,161 GWAS SNPs

on chromosome 19 in the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) dataset.26 We used an end-to-end, quantitative approach

without imposing feature selection methods or pre-assumptions. The

model’s capability for predictingADpathology anddiseaseprogression

was studied by examining the CRIS associations with the rate of cogni-

tive decline and CSF amyloid beta (Aβ) and tau protein changes over

time.

2 METHODS

2.1 Participants and data division

We used the GWAS chromosome 19 data for 457 unique ADNI par-

ticipants classified as CU and 313 diagnosed with dementia due to AD

(hereafter referred to as “AD”). Three hundred eighty-twowereADNI1

and 388 ADNI2 participants, which used Illumina Human 610-Quad

BeadChip and Illumina Human Omni Express BeadChip as the geno-

typing platform, respectively. We randomly divided the total dataset

(N = 770) into 60% train (N = 462), 20% validation (N = 154), and

20% test (N= 154) sets (Table 1)27,28 used to train the model, tune the
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BAE ET AL. 3

TABLE 1 Demographic and clinical comparisons of Alzheimer’s disease (AD) and cognitively unimpaired (CU) participants as well as the train,
validation, and test set in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset.

AD

(N= 457)

CU

(N= 313)

Train

(N= 452)

Validation

(N= 154)

Test

(N= 154)

Age, mean (SD), years 74.7 (7.8) 74.1 (5.7) 74.3 (6.5) 74.6 (6.9) 74.3 (6.7)

Education, mean (SD), years 15.2 (3.0) 16.4 (2.7) 15.9 (2.8) 15.8 (3.1) 16.0 (2.8)

Diagnosis (% AD) 100% 0% 40.7% 41.6% 39.6%

Sex (%Male) 56.9% 50.6% 52.6% 52.6% 55.2%

APOE ε4 (% APOE ε4+) 63.9% 26.7% 41.8% 40.3% 43.5%

Race (%White) 98.7% 98.7% 98.7% 98.7% 98.7%

Aβ baseline, mean (SD), pg/mL 656.4 (285.6) 965.8 (375.5) 827.7 (374.5) 852.7 (389.5) 783.2 (337.8)

Rate of Aβ change, mean (SD), pg/mL/year −26.4 (98.6) −20.25 (105.7) −23.5 (89.2) −20.9 (80.4) −20.9 (153.4)

t-tau baseline, mean (SD), pg/mL 354.3 (140.0) 254.8 (98.0) 300.9 (128.9) 286.5 (126.3) 287.4 (120.0)

Rate of t-tau change, mean (SD), pg/mL/year 8.0 (31.2) 6.3 (14.2) 5.2 (19.6) 7.9 (17.7) 10.0 (25.5)

p-tau baseline, mean (SD), pg/mL 35.1 (15.3) 23.8 (10.5) 29.0 (14.1) 27.5 (13.7) 27.7 (13.2)

Rate of p-tau change, mean (SD), pg/mL/year −0.2 (3.0) 0.6 (1.3) 0.3 (2.1) 0.5 (2.0) 0.4 (1.6)

Aβ/t-tau ratio baseline, mean (SD) 2.2 (1.7) 4.6 (2.6) 3.4 (2.5) 3.8 (2.6) 3.5 (2.5)

Rate of Aβ/t-tau change, mean (SD) −0.1 (0.4) −0.2 (0.5) −0.1 (0.4) −0.2 (0.3) −0.2 (0.8)

Aβ/p-tau ratio baseline, mean (SD) 23.6 (20.4) 51.5 (31.0) 37.9 (29.9) 41.6 (31.7) 38.2 (28.9)

Rate of Aβ/p-tau change, mean (SD) −1.1 (5.3) −1.7 (5.7) −0.1 (0.4) −0.1 (0.3) −0.1 (0.7)

MEMbaseline, mean (SD) −0.9 (0.5) 1.0 (0.6) 0.2 (1.1) 0.3 (1.0) 0.2 (1.1)

Rate ofMEM change, mean (SD) −0.2 (0.4) −0.0 (0.2) −0.1 (0.3) −0.1 (0.3) −0.1 (0.3)

LAN baseline, mean (SD) −0.8 (0.9) 0.8 (0.7) 0.2 (1.1) 0.3 (1.1) 0.2 (1.1)

Rate of LAN change, mean (SD) −0.4 (0.6) −0.0 (0.2) −0.2 (0.5) −0.1 (0.5) −0.2 (0.5)

EF baseline, mean (SD) −0.9 (0.9) 0.8 (0.8) 0.1 (1.2) 0.2 (1.1) 0.0 (1.3)

Rate of EF change, mean (SD) −0.3 (0.6) −0.0 (0.3) −0.2 (0.5) −0.1 (0.4) −0.2 (0.5)

VS baseline, mean (SD) −0.6 (0.9) 0.2 (0.6) −0.1 (0.87) −0.0 (0.8) −0.1 (0.9)

Rate of VS change, mean (SD) −0.3 (0.9) −0.1 (0.4) −0.2 (0.7) −0.1 (0.7) −0.2 (0.7)

Note: Cognitive composite scoreswere provided by theCrane group. Pairwise chi-square and t tests between the train, validation, and test sets regarding age
and education, sex, APOE ε4, and diagnosis distribution found no significant differences (Table S1 in supporting information).

Abbreviations: Aβ, amyloid beta; APOE, apolipoprotein E; EF, executive functioning; LAN, language; MEM, memory; p-tau, phosphorylated tau; SD, standard

deviation; t-tau, total tau; VS, visuospatial.

hyperparameters, and test its performance, respectively. For details on

how the data were processed, please refer to Data S1 in supporting

information.

2.2 Model architecture

We implemented the Capsule Network (CapsNet)29,30 to examine

SNP–SNP interactions considering the positional relations between

SNPs. CapsNet has two significant features: (1) primary capsule lay-

ers and (2) dynamic routing algorithms. The primary capsule layer is

a multi-dimensional convolutional layer that enables the identification

not only of the specific contribution of each SNP but also its spatial

relation with other SNPs. The dynamic routing algorithm is applied

between primary capsule layers. It connects lower-level primary cap-

sules encapsulating a finer AD risk pattern, to higher level primary

capsules encapsulating a broader AD risk pattern. Themodel produces

the likelihood of being AD versus CU at the last capsule layer, the

Class capsule layer (Figure S1 in supporting information). A higher like-

lihood of AD than CU results in a predicted AD participant (pADp)

and conversely a higher likelihood of CU than AD predicted CU par-

ticipants (pCUp; see Data S3 in supporting information). The model

was modified to have a smaller complexity and was trained with mul-

tiple regularizationmethods (seeData S4 in supporting information) to

manage overfitting.

2.3 Identification of AD and CU contributing
SNPs and their CRIS

We used occlusion maps as a feature visualization method to inter-

pret the model.31 Occlusion mapping is a technique that measures the

change in the prediction scores when a single or a group of features

(in our case an AD-risk SNP or a group of AD-risk SNPs) are masked
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4 BAE ET AL.

(Figure S2 in supporting information). A decrease in prediction score

for AD (psAD) due to occlusion indicates that the respective SNP plays

a role in AD and vice versa. We sequentially and individually occluded

266,161 SNPs for each participant. We averaged the occlusion results

and ranked the SNP based on the corresponding change in psAD and

prediction score for CU (psCU) (Figure S3 in supporting information).

The top35ADandCUSNPs, showing thegreatest decrease inpsADfor

pADp or psCU for pCUpwere identified (see Data S5 and Tables S2-S4

in supporting information). The change in psAD essentially indicates

the individual SNP contribution to the CRIS.

To determine epistatic interactions, we tested how the co-occlusion

of each possible combination of 2 SNPs from the top 35 AD or top 35

CU SNPs affected the prediction results. If the prediction score change

was higher or lower than the sum of prediction changes of each indi-

vidual SNP, we concluded that there was an interaction (amplification

or attenuation) between them (Figure S4 in supporting information).

In our final experiment, we substituted each of the top 35 AD and CU

SNPs with the other biologically plausible genotypes and measured

the corresponding psAD change thereby simulating genetic editing

technologies such as CRISPR.

2.4 Predicting AD progression in multiple linear
regression

Weusedmultiple linear regression to estimate the ability of the top 35

AD SNPs and their interactions to predict the rate of cognitive decline

and the rate of CSFAβ and tau protein changes for pADp. Sex, age, edu-
cation, and APOE ε4 genotypes were used as covariates. To avoid the

degree of freedom exceeding the number of samples, we restrained

the number of SNPs to three plus their four interaction terms. Every

possible combination of 3 SNPs within the top 35 AD SNPs was

tested.Weused composite scores for thememory, language, executive,

and visuospatial domains.32–34 The CSF measures included changes in

Aβ, total tau (t-tau), phosphorylated tau (p-tau), Aβ/t-tau, and Aβ/p-
tau.35 The rate of change (slope) in cognitive and CSF measures was

calculated by dividing all available longitudinal measures by their

follow-up time period on a yearly scale (Tables S5 and S6 in supporting

information).

2.5 Implementing deep learning pipeline to the
external dataset

We replicated our model using independent GWAS data from the

Imaging and Genetic Biomarkers of Alzheimer’s Disease (ImaGENE)

study (see Table S7 in supporting information for participant demo-

graphics and comparisons to the ADNI sample). SNP genotyping in

ImaGENEwas completed using Illumina 1Mchips. The ImaGENE study

enrolled and followed longitudinally a total of 159 participants (52 CU

and 107 mild cognitive impairment [MCI]) for 5 years. Our analyses

included 22 participants who converted to AD dementia from both

CU or MCI during 5-year follow-up as AD participants and 28 CU par-

ticipants who remained CU over the same period as CU participants.

These inclusion criteria resulted in 50 participants for our external test

dataset.

3 RESULTS

3.1 Deep learning model performance

Our deep learning prediction model achieved an accuracy of 68.18%

(specificity = 72.04%, sensitivity = 62.30%, area under the curve

[AUC] = 0.67, equal error rate = 0.37 [Figure S1]). Given that the

test set of 154 subjects contained 93 CU participants, a random guess

of pCUp would produce 60.39% classification accuracy. Also, in the

test set, 63.93% of AD participants as opposed to 30.11% of CU

participants were APOE ε4 carriers. Hence, with APOE information

alone, we could achieve a CU versus AD accuracy of 67.53% (speci-

ficity = 69.9%, sensitivity = 63.9%). Therefore, our model performed

slightly better than both the random guess and the APOE information.

For the model validation results, please refer to Data S6 in supporting

information. We further implemented three different machine learn-

ing models, support vector machine, decision tree, and random forest,

as comparison to demonstrate that our deep learning model outper-

forms conventional machine learning models (Table S8 in supporting

information).

3.2 The top 35 AD SNPs and their epistatic
interactions

Among the 35 AD SNPs, 7 belonged to APOC1 and another 7 to

TOMM40. Additionally, we observed 5 SNPs from zinc finger pro-

tein 473 (ZNF473) and 3 SNPs from vaccina-related kinase ser-

ine/threonine kinase 3 (VRK3; Table 2, left panel). Co-occlusion of two

AD SNPs at a time resulted in 574 and 358 amplification and 21 and

170 attenuation interactions of pADp and pCUp, respectively (Table S9

in supporting information). It must be noted that the two APOE SNPs,

rs429358 and rs7412, were not detected as AD-risk SNPs (see Data

S7 in supporting information). For CU SNPs, please refer to Data S8 in

supporting information.

3.3 Significance of the top 35 AD SNPs in
predictions

Sixty-four test set participants with higher psAD than psCUwere clas-

sified as pADp. The mean prediction gap between psAD and psCU

for these participants was 0.147 with a standard deviation of 0.065.

If all the top 35 AD chromosome 19 SNPs were occluded, the aver-

age decrease in psAD and increase in psCU were 0.292 (29.2%) and

0.137 (13.7%), respectively.With all 35ADSNPsoccluded, all originally

predictedpADpwerepredicted as pCUp (Figure S5 in supporting infor-

mation). Therefore, we concluded that the topADSNPs have dominant
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BAE ET AL. 5

TABLE 2 Genes that include AD and CU SNPs.

Top 35AD SNPs Top 35 CU SNPs

APOC1 TOMM40 ZNF473 VRK3 ERCC1 ZNF714
LOC

105372326 ZNF208 APOC1

rs144311893 rs78245864 rs28372420 rs149633759 rs3212986 rs546840781 rs143835282 rs2359812 rs4420638

rs139136389 rs1038026 rs10425282 rs60229698 rs62109562 rs73024674 rs563728461 rs4456632 rs56131196

rs12721051 rs141864196 rs146272735 rs147510483 rs59228959 rs143553695 rs79534448 rs4550595

rs12721056 rs112019714 rs10406823 rs182296059 rs3212989 rs73024685 rs117384953

rs1064725 rs117264457 rs11083997 rs28586606 rs139001424 VRK3

rs56131196 rs149311267 APOC2 rs2336219 rs73024675 rs56934989

rs12721046 rs116977783 ERCC1 rs12709887 rs3212985 rs143211742

rs2229918 rs1130742 rs12984195

rs7257095

Others Others

rs147817461 rs138451097 rs3745513 rs140962335 rs554404582 rs190058096 rs574395670 rs11670070 rs140965804

rs8103298 rs182542361 rs117529462 rs73923361 rs617761 rs553334631 rs138603379 rs846884 rs143994597

Note: APOC1 and VRK3 feature both risk and protective SNPs. Linkage disequilibrium between these SNPs, as well as APOE haplotype SNPs, was presented
in Figure S17 in supporting information.

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; CU, cognitively unimpaired; SNP, single nucleotide polymorphism.

power in making prediction results. For CU SNPs, please refer to Data

S9 in supporting information.

3.4 Analysis of the AD SNPs for predicting pADp

Rs56131196 (APOC1) was the most significant SNP for pADp.

Occluding it produced CRIS of −0.023, that is, −2.3% likelihood

of AD. Rs56131196 (APOC1) also showed the strongest interac-

tions with other SNPs. The co-occlusion of rs56131196 (APOC1)

and rs144311893 (APOC1) produced a CRIS of −0.045 (−4.5%). The

greatest CRIS amplification occurred when rs147510483 (VRK3) and

rs149633759 (VRK3) were occluded together. Their individual CRIS

were−0.002 (−0.2%) and−0.004 (−0.4%), respectively, but when they

were removed simultaneously, a−0.010 (i.e.,−1%) CRISwas observed.

The greatest attenuation was observed when rs60229698 (VRK3) and

rs149633759 (VRK3) were occluded together. Each SNP resulted in

−0.004 (0.4%)CRIS, yetwhen removed together,weobserved still only

a −0.004 (−0.4%) CRIS (Figures S6 and S7 in supporting information).

ForCUSNPs, please refer toData S10 (Figures S8andS9) in supporting

information.

3.5 Independent dataset validation

Only 206,756 of the 266,161 SNPs available in ADNI (Illumina Human

610-Quad and Omni Express BeadChip arrays) were available in

ImaGENE (Illumina 1 M array, Table S10 in supporting information).

Despite the missing 59,405 SNPs, 26 out of the top 35 ADNI pADp

SNPs were also identified as strong AD-contributing SNPs in the Ima-

GENE dataset (Table S11 in supporting information). Rs56131196

(APOC1) and rs2229918 (repair cross complementation group 1/CD3e

molecule associated protein [ERCC1/CD3EAP]) were detected as the

most and the second most significant AD SNPs with respect to pADp

and pCUp (Tables S12–S14 in supporting information). Based on this

external validationwe concluded that our deep learningmodel reliably

identifies AD-contributing SNPs.

3.6 Genotype replacement of the most powerful
AD SNPs

Rs56131196 (APOC1) was recognized as the most powerful individ-

ual pADp SNP and the fourth most powerful pCUp SNP; 79.69%

of pADp had an adenine/guanine (A/G) genotype while ≈88.89% of

pCUp had the reference, G/G, genotype at this locus. Rs56131196A/G

had 6 interactions stronger than 0.003 with other AD SNPs located

in APOC1/APOC1P1, TOMM40, and ERCC1/CD3EAP (Figures S10 and

S11 in supporting information) that further decreased psAD when

replaced. Replacing rs56131196 A/G with G/G in pADp decreased

psAD by 0.079 (7.9%). This led to ≈36% of pADp now being predicted

as pCUp (Figure S12 in supporting information). For pCUp, please refer

to Data S11 (Figures S13 and S14) in supporting information.

3.7 Relating CRIS of three AD SNPs to the rate
of cognitive decline

We hypothesized that the CRIS derived from the top 35 AD SNPs

would associate with the rate of cognitive decline in the pADp. The

CRIS of 3 SNPs in the top 35 AD SNPs was used due to the degree

of freedom issue. The three AD SNPs used for each cognitive mea-

sure are presented in Table S15 in supporting information. SNPs in

APOC1, APOC2, ZNF473, VRK3, and TOMM40 were used. We found
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6 BAE ET AL.

that their CRIS was significantly correlated with the rate of cognitive

decline (P < .05, r2-adjusted = 0.19–0.43). The weakest association

was observed for the memory domain and the highest for the exec-

utive function domain (Table 3 and Tables S16 and S17 in supporting

information).

3.8 Relating CRIS of three AD SNPs to CSF
biomarker changes

The three AD SNPs used for each CSF measure are presented in Table

S15. The main, as well as interactive, effects of the three selected AD

SNPs on longitudinal changes of CSF biomarkers were examined using

the approach outlined above. SNPs in APOC1, APOC2, TOMM40, and

ERCC1 were used. All regression models were significant (P < .05, r2-

adjusted= 0.89–0.99). The strongest prediction was seen for Aβ/p-tau
and the weakest for t-tau (Table 4).

4 DISCUSSION

We report a novel deep-learning framework derived from 266,161

SNPs from chromosome 19 in a hypothesis-freemanner. To our knowl-

edge, the CapsNet approach is the first model that allows for the

exploration of the epistatic interactions between AD risk or protec-

tive SNPs. Our model determined SNPs from previously recognized

AD genomic regions including APOC1, TOMM40, and VRK3 as well as

novel regions (Tables S2–S4). Rs56131196 (APOC1) and rs2229918

(ERCC1/CD3EAP) were identified as the most powerful AD-risk SNPs

forpADpandpCUp, respectively.Wequalified these findingswithprior

medical knowledge.

APOC1 resulted in the most substantive change in predicting AD

and CU if occluded. Rs56131196 from APOC1 has been previously

identified as an APOE ε4–independent AD risk factor associated with

hippocampal atrophy.36 Many research groups have spotlighted the

association between APOC1 and cognitive performance in AD.37–40 In

terms of the interactive effects between SNPs in APOC1 and TOMM40

(Figure S6), Prendecki et al. reported that defects in APOC1, in addi-

tion to the TOMM40 gene, increase oxidative stress and have an APOE

ε4–independent effect on AD progression.41

The top APOE SNP, rs439401, ranked as the forty-seventh pADp

SNP with CRIS = −0.003 (−0.3%). This SNP has been previously asso-

ciated with AD.42,43 Surprisingly, rs429358 and rs7412, commonly

used to define the APOE ε4 haplotype, were not determined as pow-

erful predictive features. APOE ε4 haplotype did not affect prediction

changes when occluded nor epistatic effects with any other SNPs

in chromosome 19 when co-occluded, indicating that it did not con-

tribute to model’s predictive performance (see Data S7). Replacement

of rs429358 and/or rs7412 showed no change in CRIS and no ampli-

fication or attenuation effects. This was a consistent finding across

three separatemodels (Figures S15 and S16), five non-overlapping test

sets from ADNI (Data S6), and one independent dataset (ImaGENE).

APOE, however, was strongly collinear with the model’s prediction T
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results (Tables S18-S19). This is most likely explained by the strong

linkage disequilibrium of APOE with APOC1 (Figure S17 in supporting

information).

The occlusion of rs2229918 (ERCC1/CD3EAP) decreased psAD in

pCUp the most, that is, pCUp subjects were more likely to be diag-

nosed with AD when this SNP was occluded. ERCC1 is known to

play a role in DNA repair. A previous study reported that deficient

ERCC1 protein leads to imbalance between DNA repair and oxida-

tive stress andneurodegeneration.44 ERCC1Δ/−mice showedneuronal

apoptosis and synaptic plasticity deficits in the hippocampus and accel-

erated age-dependent cognitive decline.45–50 CD3EAP has differential

hippocampal expression in AD versus healthy controls.51,52

As an interactive effect, SNPs in VRK3 were found to have the

strongest amplification effect in pADp, while for pCUp, SNP APOC1

showed the most powerful interaction (Data S9). For the attenuation

effect, VRK3 and ERCC1 showed the highest attenuated impact for

pADp and pCUp, respectively. VRK3 was also known to progress AD

via oxidative stress–induced cyclin-dependent kinase 5 (CDK5).53

Top AD SNPs determined by our model, however, did not include

genome-wide significant SNPs from the three latest GWAS research

projects.13–15 This is due to the differences in diversity of race, popu-

lation size, and AD risk factor identification process. GWAS identified

AD risk factors by examining the association between genotype and

phenotype. The three latestGWAS researchprojects suggested in total

16 AD-risk SNPs in chromosome 19 excluding APOE haplotype (Table

S20 in supporting information). On the other hand, our deep learning

model examined the genetic variants as well as their epistatic interac-

tions.We quantified the impact of previously suggestedGWASAD risk

factors and found that their contribution to ourmodel’s predictive per-

formance isminimal (Table S20). Therefore,weconcluded that epistatic

interactions play a more significant role than the genetic variant itself

in recognizing AD risk factors. This indicates that epistatic effects

provided a more powerful contribution in increasing the model’s

performance than the GWAS variants including APOE haplotype.

Our next goal was to demonstrate that AD risk SNPs identified by

the deep learningmodel and their CRIS associatewith AD progression.

Wewere able to demonstrate that a small number of SNPs (in this case

3) out of the 35 powerfully associated with CSF biomarker changes

over time and also showmodest associationwith decline across all cog-

nitive domains. All regression models were significant, which implies

twopoints: (1) the over-fitting issuewaswell handled and (2) ourmodel

determined AD risk SNPs that account for biological as well as clinical

AD progression.

Several strengths and limitations of our approach should be recog-

nized. One of the novelties of this research lies in the examination of

SNP–SNP interactions. Statistical GWAS approaches disregard SNP–

SNP interactions. It is highly likely that the positional information and

variability in spatial relationshipsbetweenSNPsand/orSNPsequences

is amajor component of themissing heritability. CapsNet is able to ana-

lyze positional relations between AD risk SNPs leading to the use of

spatial and positional information in our predictivemodel. This enables

the individual inspection of each SNP regardless of the given SNP’s

linkage disequilibrium.
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The model developed here as a proof-of-concept study used GWAS

data from a single chromosome.We believed that the restrictive infor-

mation of input data, that is, chromosome 19, limited the model’s

predictive performance. A future study using multiple/all chromo-

somes will perform better and allow the identification of powerful

epistatic interactions within and between chromosomes. Using more

comprehensive input data will provide sufficient information, that is,

AD genetic risk factors as well as their epistatic interactions, to explain

the genetic nature of AD. Combining all risk variants in a data-driven

algorithm and defining a genome-wide polygenic risk score is our goal

for the future.

No single dataset is fully representative of the population. Hence,

the biological interpretation originating from the weight matrix at the

lowest validation loss in our dataset might not optimally align with

the full breadth of observations in nature. One could postulate that

implementing a different model on a different dataset subjected to

different pre-processing might identify different features. To mini-

mize this risk and increase our confidence in the results, we validated

the findings through three different model architectures, five inter-

nal train/validation/test sets, and in an external dataset and produced

similar outcomes.

Identifying epistatic interactions between SNPs in different chro-

mosomes was beyond the scope of this research. In a future study, we

will aim to use GWAS data of all 23 chromosomes, build a comprehen-

sive polygenic risk score, and map out the entire genetic architecture

of AD.

In summary, we implemented the novel CapsNet, which examines

the interactive effects betweenSNPs.Ourmodel captured the variabil-

ity of not only the individual SNPs but also their positional relations.

We identified and ranked the top 35 AD-predictive GWAS SNPs on

chromosome 19 by studying their individual contribution as well as

their epistatic effects. We used the occlusion method in a fully quan-

titative manner without imposing any feature selection methods. Last,

we estimated the change of the likelihood of AD that one could expect

from gene-editing technology such as CRISPR by replacing genotypes

at certain SNPs. This CRISPR simulation technique could provide

useful insight into the primary prevention or disease modification

opportunities that could be achieved through gene editing.

In conclusion, ourhypothesis-freedeep learning approach identified

potential AD risk SNPs that might bring us closer to a full understand-

ing of AD’s heritability and personalized genome-level risk assessment.

Our approach shows promise for clinical implementation as an AD risk

assessment tool and for pre-symptomatic clinical trial enrichmentwith

patients at high likelihood for AD.
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